Go Wiki: 切片技巧

自从引入内置函数 append 后,container/vector 包(在 Go 1 中已移除)的大部分功能可以使用 appendcopy 来重现。

自从引入泛型后,其中几个函数的泛型实现可在 golang.org/x/exp/slices 包中找到。

以下是 vector 方法及其对应的 slice 操作

追加向量

a = append(a, b...)

复制

b := make([]T, len(a))
copy(b, a)

// These two are often a little slower than the above one,
// but they would be more efficient if there are more
// elements to be appended to b after copying.
b = append([]T(nil), a...)
b = append(a[:0:0], a...)

// This one-line implementation is equivalent to the above
// two-line make+copy implementation logically. But it is
// actually a bit slower (as of Go toolchain v1.16).
b = append(make([]T, 0, len(a)), a...)

剪切

a = append(a[:i], a[j:]...)

删除

a = append(a[:i], a[i+1:]...)
// or
a = a[:i+copy(a[i:], a[i+1:])]

无序删除

a[i] = a[len(a)-1] 
a = a[:len(a)-1]

注意 如果元素的类型是指针或包含指针字段的结构体,且需要进行垃圾回收,那么上述 CutDelete 的实现可能存在潜在的内存泄漏问题:一些包含值的元素仍然被 slice a 的底层数组引用,只是在 slice 中“不可见”。因为“已删除”的值在底层数组中被引用,即使代码无法引用该值,它在 GC 期间仍然“可达”。如果底层数组生命周期很长,这就会导致内存泄漏。以下代码可以解决此问题

剪切

copy(a[i:], a[j:])
for k, n := len(a)-j+i, len(a); k < n; k++ {
    a[k] = nil // or the zero value of T
}
a = a[:len(a)-j+i]

删除

copy(a[i:], a[i+1:])
a[len(a)-1] = nil // or the zero value of T
a = a[:len(a)-1]

无序删除

a[i] = a[len(a)-1]
a[len(a)-1] = nil
a = a[:len(a)-1]

扩展

在位置 i 插入 n 个元素

a = append(a[:i], append(make([]T, n), a[i:]...)...)

扩展

追加 n 个元素

a = append(a, make([]T, n)...)

扩容

确保有足够的空间追加 n 个元素而无需重新分配内存

if cap(a)-len(a) < n {
    a = append(make([]T, 0, len(a)+n), a...)
}

过滤 (原地操作)

n := 0
for _, x := range a {
    if keep(x) {
        a[n] = x
        n++
    }
}
a = a[:n]

插入

a = append(a[:i], append([]T{x}, a[i:]...)...)

注意:第二个 append 会创建一个具有独立底层存储的新 slice,并将 a[i:] 中的元素复制到该 slice 中,然后这些元素再被复制回 slice a(由第一个 append 完成)。创建新 slice(以及因此产生的内存垃圾)和第二次复制可以通过使用替代方法来避免。

插入

s = append(s, 0 /* use the zero value of the element type */)
copy(s[i+1:], s[i:])
s[i] = x

插入向量

a = append(a[:i], append(b, a[i:]...)...)

// The above one-line way copies a[i:] twice and
// allocates at least once.
// The following verbose way only copies elements
// in a[i:] once and allocates at most once.
// But, as of Go toolchain 1.16, due to lacking of
// optimizations to avoid elements clearing in the
// "make" call, the verbose way is not always faster.
//
// Future compiler optimizations might implement
// both in the most efficient ways.
//
// Assume element type is int.
func Insert(s []int, k int, vs ...int) []int {
    if n := len(s) + len(vs); n <= cap(s) {
        s2 := s[:n]
        copy(s2[k+len(vs):], s[k:])
        copy(s2[k:], vs)
        return s2
    }
    s2 := make([]int, len(s) + len(vs))
    copy(s2, s[:k])
    copy(s2[k:], vs)
    copy(s2[k+len(vs):], s[k:])
    return s2
}

a = Insert(a, i, b...)

推入

a = append(a, x)

弹出

x, a = a[len(a)-1], a[:len(a)-1]

前端推入/Unshift

a = append([]T{x}, a...)

前端弹出/Shift

x, a = a[0], a[1:]

更多技巧

无需分配内存的过滤

这个技巧利用了 slice 与原始 slice 共享同一底层数组和容量的事实,因此过滤后的 slice 重用了存储空间。当然,原始内容会被修改。

b := a[:0]
for _, x := range a {
    if f(x) {
        b = append(b, x)
    }
}

对于必须进行垃圾回收的元素,之后可以包含以下代码

clear(a[len(b):])

反转

将 slice 的内容替换为相同元素但顺序相反

for i := len(a)/2-1; i >= 0; i-- {
    opp := len(a)-1-i
    a[i], a[opp] = a[opp], a[i]
}

同样的操作,但使用两个索引

for left, right := 0, len(a)-1; left < right; left, right = left+1, right-1 {
    a[left], a[right] = a[right], a[left]
}

洗牌

Fisher–Yates 算法

自 go1.10 起,此功能可在 math/rand.Shuffle 中使用。

for i := len(a) - 1; i > 0; i-- {
    j := rand.Intn(i + 1)
    a[i], a[j] = a[j], a[i]
}

最大限度减少内存分配的分批处理

如果您想对大型 slice 进行分批处理,此方法很有用。

actions := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
batchSize := 3
batches := make([][]int, 0, (len(actions) + batchSize - 1) / batchSize)

for batchSize < len(actions) {
    actions, batches = actions[batchSize:], append(batches, actions[0:batchSize:batchSize])
}
batches = append(batches, actions)

结果如下

[[0 1 2] [3 4 5] [6 7 8] [9]]

原地去重 (可比较类型)

import "sort"

in := []int{3,2,1,4,3,2,1,4,1} // any item can be sorted
sort.Ints(in)
j := 0
for i := 1; i < len(in); i++ {
    if in[j] == in[i] {
        continue
    }
    j++
    // preserve the original data
    // in[i], in[j] = in[j], in[i]
    // only set what is required
    in[j] = in[i]
}
result := in[:j+1]
fmt.Println(result) // [1 2 3 4]

移至头部,如果不存在则添加到头部,尽可能原地操作。

// moveToFront moves needle to the front of haystack, in place if possible.
func moveToFront(needle string, haystack []string) []string {
    if len(haystack) != 0 && haystack[0] == needle {
        return haystack
    }
    prev := needle
    for i, elem := range haystack {
        switch {
        case i == 0:
            haystack[0] = needle
            prev = elem
        case elem == needle:
            haystack[i] = prev
            return haystack
        default:
            haystack[i] = prev
            prev = elem
        }
    }
    return append(haystack, prev)
}

haystack := []string{"a", "b", "c", "d", "e"} // [a b c d e]
haystack = moveToFront("c", haystack)         // [c a b d e]
haystack = moveToFront("f", haystack)         // [f c a b d e]

滑动窗口

func slidingWindow(size int, input []int) [][]int {
    // returns the input slice as the first element
    if len(input) <= size {
        return [][]int{input}
    }

    // allocate slice at the precise size we need
    r := make([][]int, 0, len(input)-size+1)

    for i, j := 0, size; j <= len(input); i, j = i+1, j+1 {
        r = append(r, input[i:j])
    }

    return r
}

此内容是 Go Wiki 的一部分。